Face Factor¶
This section covers how to use the Face Factor for generating and verifying Private IDs.
- class cryptonets_python_sdk.factor.FaceFactor(*args, **kwargs)¶
The FaceFactor class implements the methods for enrolling and predicting the Face module as part of the Biometric Authentication.
It exposes five methods as part of the interface:
is_valid: Verifies the face of the user.
estimate_age: Predicts the age of the face.
compare: Compare two faces for verification.
enroll: Enrolls the face of the user.
predict: Predicts the face of the user.
delete: Deletes the user from the system
- Parameters:
- api_keystr
The API key for using the FaceFactor server.
- server_urlstr
The URL of the FaceFactor server.
- local_storage_pathstr (optional)
Absolute path to the local storage.
- logging_levelLoggingLevel (Optional)
LoggingLevel needed while performing operation
- tf_num_thread: int (Optional)
Number of thread to use for Tensorflow model inference
- cache_type: CacheType (Optional)
To set the cache on / off
- configConfigObject (Optional)
Configuration class object with parameters
Methods
is_valid([image_path, image_data, config])Check if the image is valid for using in the face recognition
estimate_age([image_path, image_data, config])Check if the image is valid and returns the age of the image
compare([image_path_1, image_path_2, ...])Check if the images are of same person or not
enroll([image_path, image_data, config])Enrolls the image in the face recognition server
predict([image_path, image_data, config])Predicts the image in the face recognition server
get_iso_face([image_path, image_data, config])Takes the face image and gives back the image in ISO Spec format
delete
- Returns:
- FaceFactor
Instance of the FaceFactor class.
- compare(image_path_1: str = None, image_path_2: str = None, image_data_1: array = None, image_data_2: array = None, config: ConfigObject = None) FaceCompareResult¶
Check if the images are of same person or not
- Parameters:
- image_path_1
Directory path to the first image file
- image_path_2
Directory path to the second image file
- config (Optional)
Additional configuration parameters for the operation
- image_data_1 (Optional)
First Image data in numpy RGB format
- image_data_2 (Optional)
Second Image data in numpy RGB format
- Returns:
- FaceCompareResult
status: int [0 if same, 1 if different, -1 if unsuccessful]
message: str [Message from the operation]
result: str
distance_min: str
distance_mean: str
distance_max: str
first_validation_result: str
second_validation_result: str
- enroll(image_path: str = None, image_data: array = None, config: ConfigObject = None) FaceEnrollPredictResult¶
Enrolls the image in the face recognition server
- Parameters:
- image_path
Directory path to the image file
- config (Optional)
Additional configuration parameters for the operation
- image_data (Optional)
Image data in numpy RGB format
- Returns:
- FaceEnrollPredictResult
status: int [0 if successful -1 if unsuccessful]
message: str [Message from the operation]
enroll_level: str
guid: str
puid: str
token: str
- estimate_age(image_path: str = None, image_data: array = None, config: ConfigObject = None) FaceValidationResult¶
Check if the image is valid and returns the age of the image
- Parameters:
- image_path
Directory path to the image file
- config (Optional)
Additional configuration parameters for the operation
- image_data (Optional)
Image data in numpy RGB format
- Returns:
- FaceValidationResult
error: int [0 if successful -1 if any error]
message: str [Message from the operation]
face_objects: List[FaceObjectResult]
- get_iso_face(image_path: str = None, image_data: array = None, config: ConfigObject = None) ISOFaceResult¶
Takes the face image and gives back the image in ISO Spec format
- Parameters:
- image_path
Directory path to the image file
- config (Optional)
Additional configuration parameters for the operation
- image_data (Optional)
Image data in numpy RGB format
- Returns:
- ISOFaceResult
status: int [0 if successful -1 if unsuccessful]
message: str [Message from the operation]
image: PIL.Image
confidence: float
iso_image_width: str
iso_image_height: str
iso_image_channels: str
- is_valid(image_path: str = None, image_data: array = None, config: ConfigObject = None) FaceValidationResult¶
Check if the image is valid for using in the face recognition
- Parameters:
- image_path
Directory path to the image file
- config (Optional)
Additional configuration parameters for the operation
- image_data (Optional)
Image data in numpy RGB format
- Returns:
- FaceValidationResult
error: int [0 if successful -1 if any error]
message: str [Message from the operation]
face_objects: List[FaceObjectResult]
- predict(image_path: str = None, image_data: array = None, config: ConfigObject = None) FaceEnrollPredictResult | List[FaceEnrollPredictResult]¶
Predicts the image in the face recognition server
- Parameters:
- image_path
Directory path to the image file
- config (Optional)
Additional configuration parameters for the operation
- image_data (Optional)
Image data in numpy RGB format
- Returns:
- FaceEnrollPredictResult
status: int [0 if successful -1 if unsuccessful]
message: str [Message from the operation]
enroll_level: str
guid: str
puid: str
token: str